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We present a method for constructing multiphase excitations in the generally nonintegrable system of warm
fluid equations describing plasma oscillations. It is based on autoresonant excitation of nonlinear electron plasma
waves by phase locking with small amplitude chirped-frequency ponderomotive drives. We demonstrate the
excitation of these multiphase waves by performing fully nonlinear numerical simulations of the fluid equations.
We develop a simplified model based on a weakly nonlinear analytical theory by applying Whitham’s averaged
Lagrangian procedure. The simplified model predictions are in good agreement with the results from the warm
fluid simulations. Such autoresonantly excited multiphase waves form coherent quasicrystalline structures, which
can potentially be used as plasma photonic or accelerating devices. Finally, we discuss the laser parameters
required for the autoresonant excitation of nonlinear waves in a plasma.
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I. INTRODUCTION

The electron plasma wave is perhaps the most studied
collective oscillation in a plasma, yet the nonlinear behavior
of the electron plasma wave, including fluid and kinetic ef-
fects, remains an active topic of research [1–16] even after
decades of study. Nonlinear effects in electron plasma waves
are important for many applications of laser-plasma interac-
tions, including ultra-high gradient accelerators [17], inertial
confinement fusion (ICF) [18], and photonics for extremely
intense laser pulses [19].

In most applications, the electron plasma wave is con-
trolled by the ponderomotive force of one or more lasers.
For example, in plasma photonics, complex density structures
are envisioned for transient plasma gratings [20], holographic
gratings [21], and polarizers [22–25]. Resonant plasma in-
stabilities, and the concomitant density modulations, lead to
energy transfer between laser pulses. In the Raman backscat-
ter amplifier, energy in a long laser pulse is transferred to a
counterpropagating short pulse [26]. Crossbeam energy trans-
fer [27] makes use of a resonance with an ion acoustic wave
and is routinely utilized to control asymmetries in target illu-
mination at the National Ignition Facility (NIF).

Autoresonance is a phenomenon of nonlinear science
that has ample applications in plasma, astro-, and atomic
physics [28,29]. The basic idea of autoresonance lies in the
ability of a nonlinear system to remain in resonance by phase
locking (synchronization) with external drives with adiabati-
cally varying parameters. It has been proposed as a method
to create a large amplitude traveling plasma wave using two
copropagating lasers with a chirped frequency mismatch [30]
that passes through the linear electron plasma wave frequency.
In spatial autoresonance, two constant frequency lasers prop-
agate parallel to a plasma density gradient [31] with the linear
resonance at a specific location in the plasma. In autoreso-

*vmunirov@berkeley.edu

nance, the nonlinear oscillator maintains synchronism with
a chirped-frequency drive so long as a threshold condition,
which relates the chirp rate to the drive amplitude, is satis-
fied. Autoresonance can be used as a method to excite large
amplitude traveling ion acoustic waves [32,33].

Autoresonant excitation of electron plasma and ion acous-
tic waves is not limited to traveling waves. It was shown in
Ref. [34] that a large amplitude standing ion acoustic wave
can be formed using two counterpropagating ponderomotive
drives with a chirped frequency difference. This standing
wave comprises a particular nonlinear two-phase ion acoustic
wave structure, wherein each locked phase corresponds to one
of the counterpropagating traveling drives. Large amplitude
standing electron plasma waves can be created with autoreso-
nant drives [35].

It has been shown, using both theory and numerical simula-
tions, that one can use autoresonance to construct multiphase
solutions for integrable systems, such as the Korteweg–
de Vries (KdV) equation [36], the Toda lattice [37], the
nonlinear Schrödinger equation [38], and the sine-Gordon
equation [39]. Multiphase nonlinear waves are significantly
more difficult to analyze theoretically than traveling waves,
which can be described by a single phase. The theory for
autoresonant wave excitation, nevertheless, has been extended
to two-phase nonlinear waves. In a recent publication [40],
we demonstrated how autoresonance can be used to create
two-phase solutions in the generally nonintegrable system of
equations describing ion acoustic waves. This extends the ear-
lier work where the autoresonant excitation was analyzed for
nonlinear single-phase [32,33] and standing [34] ion acoustic
waves. In Ref. [35] it was shown that autoresonance can
be used to excite large amplitude standing electron plasma
waves, which can be regarded as a particular case of a more
general two-phase solution. In this paper we will show that
the system describing plasma waves indeed exhibits nonlinear
two-phase solutions that are characteristic of integrable par-
tial differential equations. Similar to the case of ion acoustic
waves [40], space-time quasicrystalline structures formed by
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FIG. 1. The colormap of the electron density ne(x, τ ) as a func-
tion of slow time τ = √

α1t and coordinate x obtained by solving the
fully nonlinear equations (1)–(3). (a) Two-phase autoresonant plasma
wave excited by two driving counterpropagating traveling waves
with k1 = 1 and k2 = −2. (b) Single-phase autoresonant plasma
wave excited solely by the first driving component with k1 = 1.
(c) Single-phase autoresonant plasma wave excited solely by the
second driving component with k2 = −2.

the autoresonantly excited multiphase nonlinear plasma waves
can potentially be used as plasma photonic or, perhaps, even,
as specialized accelerating structures.

This paper is organized as follows. In Sec. II we present a
warm fluid model of partial differential equations describing
electron plasma waves, and we demonstrate, through fully
nonlinear numerical simulations, that it supports a two-phase
solution. In Sec. III we apply Whitham’s averaged variational
principle [41,42] to the Lagrangian formulation of the fluid
equations and develop an analytical weakly nonlinear theory
in the form of a system of coupled ordinary differential equa-
tions; this system is shown to yield a good approximation of
the fully nonlinear model. In Sec. IV we estimate the laser
pulse intensity and duration required for autoresonant excita-
tion of nonlinear plasma and ion acoustic waves. Finally, a
summary and concluding remarks are given in Sec. V.

II. NUMERICAL STUDY OF THE EXCITATION
OF MULTIPHASE NONLINEAR PLASMA WAVES

A warm fluid model of electron plasma waves is consti-
tuted by a system of continuity, momentum, and Poisson’s
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FIG. 2. The colormap of the electron density ne(x, τ ) as a func-
tion of slow time τ = √

α1t and coordinate x obtained by solving the
weakly nonlinear equations (32)–(35). (a) Two-phase autoresonant
plasma wave excited by two driving counterpropagating traveling
waves with k1 = 1 and k2 = −2. (b) Single-phase autoresonant
plasma wave excited solely by the first driving component with
k1 = 1. (c) Single-phase autoresonant plasma wave excited solely by
the second driving component with k2 = −2.

equations:

σxt + [(1 + σx )ψx]x = 0, (1)

ψxt + ψxψxx = (ϕ + ϕd )x − �2(1 + σx )σxx, (2)

ϕxx = κ2ϕ + σx. (3)

Here we introduced potentials σ and ψ , which are defined
through ne = 1 + σx, v = ψx, where ne is the electron density
and v is the fluid velocity. Other variables are the electric
potential ϕ and the driving potential ϕd . Parameter κ is the
effective screening parameter (see Refs. [12,35]), while �2 =
3u2

th, where uth is the electron thermal velocity which is as-
sumed constant. All variables are dimensionless; specifically,
the time is measured in terms of the inverse plasma frequency
ω−1

p , the distance is normalized to k−1, where k is the typical
wave vector, the plasma density is normalized to the unper-
turbed plasma density, and the electric and driving potentials
are normalized to meω

2
p/ek2.

We consider the driving term consisting of the two small
amplitude traveling wave ponderomotive drives:

ϕd = ε1 cos(θd,1) + ε2 cos(θd,2), (4)
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FIG. 3. The colormap of the electron fluid velocity v(x, τ ) as
a function of slow time τ = √

α1t and coordinate x obtained by
solving the fully nonlinear equations (1)–(3). (a) Two-phase au-
toresonant plasma wave excited by two driving counterpropagating
traveling waves with k1 = 1 and k2 = −2. (b) Single-phase autoreso-
nant plasma wave excited solely by the first driving component with
k1 = 1. (c) Single-phase autoresonant plasma wave excited solely by
the second driving component with k2 = −2.

where θd,i = kix − ∫
ωd,i(t )dt (i = 1, 2) are driving phases

with wave vectors ki and slowly varying driving frequencies
ωd,i(t ) = −dθd,i/dt .

To illustrate autoresonant excitation of single- and multi-
phase plasma waves, let us consider a representative example
of two driving counterpropagating traveling waves with wave
vectors k1 = 1 and k2 = −2. We choose their chirped driving
frequencies as

ωd,i =
{
ωp,i + αit, t � 0,

ωp,i + αiTi arctan
(

t
Ti

)
, t > 0,

(5)

where Ti = 2�ωi/παi (i = 1, 2), α1 = α2 = 2.5 × 10−5,
�ω1 = �ω2 = 0.008, and ωp,i (i = 1, 2) are the frequencies
given by the linear plasma wave dispersion relation:

ωp,i(ki ) =
√√√√ 1

1 + κ2

k2
i

+ �2k2
i . (6)

We also gradually increase the driving amplitudes as εi =
ε̄i[0.5 + arctan(t

√
αi/10)/π ], ε̄i = 2 × 10−3 (i = 1, 2). We

take the electron thermal velocity and the effective screening
parameter to be uth = 0.1 and κ = 0.5, respectively. We use
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FIG. 4. The colormap of the electron fluid velocity v(x, τ ) as
a function of slow time τ = √

α1t and coordinate x obtained by
solving the weakly nonlinear equations (32)–(35). (a) Two-phase au-
toresonant plasma wave excited by two driving counterpropagating
traveling waves with k1 = 1 and k2 = −2. (b) Single-phase autoreso-
nant plasma wave excited solely by the first driving component with
k1 = 1. (c) Single-phase autoresonant plasma wave excited solely by
the second driving component with k2 = −2.

the wave vector of the first drive k1 as the typical wave vector
k (hence, k1 = 1).

The system of nonlinear partial differential equations (1)–
(3) can be solved numerically. To do this we use a
pseudospectral method [43] in space and the fourth-order
Runge-Kutta method for the time advancement, similar to the
procedure employed in Refs. [33–35,40]. We run simulations
from τ = −10 and stop the driving at τ = 10, where τ =√

α1t is a slow time variable. The results of the fully nonlinear
numerical simulations with the parameters specified above are
presented in Figs. 1, 3, 5.

Figure 1 shows a colormap of the electron density ne(x, τ )
as a function of slow time τ and coordinate x for τ between
τ = 9.5 and τ = 10. Figure 1(a) shows a two-phase nonlin-
ear electron plasma wave excited by two small amplitude
chirped-frequency traveling waves with k1 = 1 and k2 = −2.
Figure 1(b) shows a single-phase plasma wave autoresonantly
excited only by the first chirped-frequency traveling wave
drive with k1 = 1, using the same parameters in the drive
as in Fig. 1(a) but with vanishing ε2, while Fig. 1(c) shows
a single-phase plasma wave autoresonantly excited by the
chirped-frequency traveling wave drive with k2 = −2, using
the same parameters in the drive as in Fig. 1(a) but with
vanishing ε1.
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FIG. 5. The maximum over x of the electron density ne(x, τ )
(a) and the electron fluid velocity v(x, τ ) (b) vs slow time τ = √

α1t
for a two-phase autoresonant ion acoustic wave excited by two driv-
ing counterpropagating traveling waves with k1 = 1 and k2 = −2.
The solutions were obtained by solving the fully nonlinear equa-
tions (1)–(3) (denoted as “fully nonlinear,” blue line) and the weakly
nonlinear equations (32)–(35) (denoted as “weakly nonlinear,” pink
line). The dashed black line represents the absolute value of the phase
velocity of the second driving wave ωd,2(τ )/|k2| vs τ .

Figure 3 is identical to Fig. 1 but shows a colormap of
the fluid velocity v(x, τ ) as a function of slow time τ and
coordinate x instead. We can clearly see from Figs. 1 and 3
that a highly nonlinear large amplitude (δne/ne ∼ 1) two-
phase, quasiperiodic in space and time, structure is excited
by the drives. We can also see that the directions of the phase
velocities of the single-phase waves [see Figs. 1(b) and 1(c)]
correspond to the characteristic directions seen in the two-
phase solution [see Fig. 1(a)]. We also note that, as in the case
of ion acoustic waves [40], the nonlinear structures persist
even after we turn off the small amplitude drives (not shown
in the figures).

Figure 5 shows the maximum value over x of the electron
density ne(x, τ ) [Fig. 5(a)] and of the fluid velocity v(x, τ )

[Fig. 5(b)] vs slow time τ = √
α1t from the start of the simula-

tion at τ = −10 to τ = 10. We can see that the system passes
the linear plasma resonance at τ = 0 and then the amplitudes
of both waves rapidly increase, reaching large values. This
happens because, due to nonlinear effects, the waves alter their
amplitudes in a way that lets them stay phase-locked with
the external drives, allowing the continuous transfer of energy
from the drives to the excitations.

To better understand the nature of the double autoreso-
nance, and to have a tool to select the appropriate parameters
required to establish the autoresonance, we need to develop a
theory. To that end, in the next section, we will formulate the
problem in the Lagrangian language and then use Whitham’s
averaged variational principle [41,42] to obtain the simplified
weakly nonlinear equations describing the evolution of the
system.

III. WEAKLY NONLINEAR THEORY AND WHITHAM’S
VARIATIONAL METHOD

The system of nonlinear equations (1)–(3) can be described
using the Lagrangian formalism. Indeed, one can check that
Eqs. (1)–(3) are, in fact, the Euler-Lagrange equations of the
form

∂L

∂σ
− ∂

∂t

∂L

∂σt
− ∂

∂x

∂L

∂σx
= 0, (7)

∂L

∂ψ
− ∂

∂t

∂L

∂ψt
− ∂

∂x

∂L

∂ψx
= 0, (8)

∂L

∂ϕ
− ∂

∂t

∂L

∂ϕt
− ∂

∂x

∂L

∂ϕx
= 0, (9)

which emerge from the following Lagrangian density:

L = 1
2ϕ2

x + 1
2κ2ϕ2 − 1

2 (ψtσx + ψxσt ) − 1
2ψ2

x (1 + σx )

− 1
2�2σ 2

x

(
1 + 1

3σx
) + σx(ϕ + ϕd ). (10)

Since we use slowly varying driving frequencies, it is
appropriate to exploit a natural separation into slow and
fast dynamics. We now proceed to derive equations describ-
ing the slow evolution of the waves in space and time.
Whitham [41,42] demonstrated how to obtain such equa-
tions on the basis of the Lagrangian formalism. In this section,
we will employ Whitham’s averaged Lagrangian method to
obtain weakly nonlinear equations describing the evolution of
the slow variables. We will closely follow the procedure that
we used to study multiphase ion acoustic waves described in
Ref. [40].

Let us first examine the linear stage of the evolution. If
we start from the equilibrium solution (ne = 1, v = 0, ϕ = 0),
then it is straightforward to show that during the linear stage
the solutions are given by

σ = Ã10 sin(θ1) + Ã01 sin(θ2), (11)

ψ = B̃10 sin(θ1) + B̃01 sin(θ2), (12)

ϕ = C10 cos(θ1) + C01 cos(θ2), (13)
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where the linear amplitudes satisfy

C10 = ε1(
ω2

1 − �2k2
1

)(
1 + κ2

k2
1

) − 1
, (14)

C01 = ε2(
ω2

2 − �2k2
2

)(
1 + κ2

k2
2

) − 1
, (15)

Ã10 = −k1

(
1 + κ2

k2
1

)
C10, (16)

Ã01 = −k2

(
1 + κ2

k2
2

)
C01, (17)

B̃10 = −ω1

(
1 + κ2

k2
1

)
C10, (18)

B̃01 = −ω2

(
1 + κ2

k2
2

)
C01. (19)

The form of the driving potential together with the linear
stage solution suggest using the following weakly nonlinear
ansatz describing the two-phase solutions for the potentials σ ,
ψ , and ϕ:

σ = Ã10 sin(θ1) + Ã01 sin(θ2) + Ã11 sin(θ1 + θ2)

+ Ã1,−1 sin(θ1 − θ2) + Ã20 sin(2θ1) + Ã02 sin(2θ2),

(20)

ψ = B̃10 sin(θ1) + B̃01 sin(θ2) + B̃11 sin(θ1 + θ2)

+ B̃1,−1 sin(θ1 − θ2) + B̃20 sin(2θ1) + B̃02 sin(2θ2),

(21)

ϕ = C10 cos(θ1) + C01 cos(θ2) + C11 cos(θ1 + θ2)

+ C1,−1 cos(θ1 − θ2) + C20 cos(2θ1) + C02 cos(2θ2),

(22)

where θi = kix − ∫
ωi(t )dt (i = 1, 2) are phases of the solu-

tions.
Note that the above solutions correspond not to the super-

position of two separate nonlinear waves as in Ref. [44], but
to a single two-phase nonlinear wave, i.e., the solutions have
the form f (θ1, θ2) as opposed to f1(θ1) + f2(θ2).

To explicitly separate slow and fast phase variables we
introduce phase mismatches �i = θi − θd,i (i = 1, 2) between
phases of the solutions θi and the driving phases θd,i, so that
the driving term given by Eq. (4) becomes ϕd = ε1 cos(θ1 −
�1) + ε2 cos(θ2 − �2). It should be understood then that the
coefficients in our ansatz and phase mismatches �1, �2 are
slow functions of time, while the phases θ1, θ2 are rapidly
varying functions of time.

According to Whitham’s variational principle, we need to
obtain the averaged Lagrangian density L̄ by integrating the
full Lagrangian density (10) over the rapidly varying phases
θ1, θ2:

L̄ = 〈L〉θ1,θ2 =
∫

L
dθ1

2π

dθ2

2π
. (23)

The resulting averaged Lagrangian density L̄ will be a
function of the slowly varying amplitudes and the phase

mismatches only. This averaged Lagrangian is presented in
Appendix A.

After obtaining the averaged Lagrangian density L̄, we
can use the variational principle δ(

∫
L̄dxdt ) = 0 to derive

the weakly nonlinear equations that describe the evolution
of slowly modulated parameters (amplitudes and phase mis-
matches).

Following Ref. [40], we first take variations with respect
to the phases and, after keeping the lowest significant order
terms and using the linear relations (16)–(19), we obtain

d

dt

[
ω1

(
1 + κ2

k2
1

)
C2

10

]
= −ε1C10 sin(�1), (24)

d

dt

[
ω2

(
1 + κ2

k2
2

)
C2

01

]
= −ε2C01 sin(�2). (25)

Taking variations of the averaged Lagrangian density L̄
with respect to the first-order amplitudes and expanding
around the linear dispersion relation ωi = ωp,i + �ωi (i =
1, 2), we obtain

�ω1 = −2ω1k2
1

(
1 + κ2

k2
1

)2

a(k1, ω1)C2
10

− 2ω2k2
2

(
1 + κ2

k2
2

)2

b(k1, ω1; k2, ω2)C2
01

+ ε1

2ω1

(
1 + κ2

k2
1

)
C10

cos(�1), (26)

�ω2 = −2ω2k2
2

(
1 + κ2

k2
2

)2

c(k2, ω2)C2
01

− 2ω1k2
1

(
1 + κ2

k2
1

)2

b(k1, ω1; k2, ω2)C2
10

+ ε2

2ω2

(
1 + κ2

k2
2

)
C01

cos(�2), (27)

where the functions a(k1, ω1), b(k1, ω1; k2, ω2), c(k2, ω2) are
defined in Appendix B.

Notice that for ε1 = ε2 = 0, C01 = 0, and κ = 0, we obtain
from Eqs. (26)–(27) the nonlinear frequency shift for a single
nonlinear wave in the absence of the drives:

�ω1

ω1
= k4

1

6 + 9�2k2
1

ω2
1

+ (�2k2
1

ω2
1

)2

12
(
1 − �2k2

1

ω2
1

) C2
10, (28)

which agrees with the nonlinear frequency shift for a single
nonlinear wave in the laboratory frame (see Ref. [13] and
references therein).

Finally, assuming a slow drive of the form ωd,i(t ) = ωp,i +
fi(t ) and defining the effective action variables and rescaled
amplitudes through

I1 = 2ω1k2
1

(
1 + κ2

k2
1

)2

C2
10, (29)

I2 = 2ω2k2
2

(
1 + κ2

k2
2

)2

C2
01, (30)

ε1 = −2|k1|ε1, ε2 = −2|k2|ε2, (31)
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we can rewrite Eqs. (24)–(27) and obtain the following system
of coupled weakly nonlinear evolution equations:

dI1

dt
= ε1

√
I1

2ω1
sin(�1), (32)

dI2

dt
= ε2

√
I2

2ω2
sin(�2), (33)

d�1

dt
= aI1 + bI2 + f1(t ) + ε1

2
√

2ω1I1
cos(�1), (34)

d�2

dt
= bI1 + cI2 + f2(t ) + ε2

2
√

2ω2I2
cos(�2). (35)

The coupled weakly nonlinear equations (32)–(35) com-
prise a system of ordinary differential equations and can be
easily solved using any modern numerical library. Thus, the
system of the weakly nonlinear equations (32)–(35) allows
us to obtain straightforward numerical solutions as well as to
study the conditions for double autoresonance. The possibil-
ity of exciting double autoresonance and limitations on the
parameter space in the systems governed by Eqs. (32)–(35)
were discussed in detail in Ref. [40] (see also Ref. [45]), so we
will not repeat them here. These results can be easily repro-
duced for the functional forms of a(k1, ω1), b(k1, ω1; k2, ω2),
c(k2, ω2) given in Appendix B.

The results of the numerical solution of the weakly non-
linear system (32)–(35) are presented in Figs. 2 and 4–6.
The parameters used in the simulations are identical to the
ones used in the fully nonlinear numerical simulations of the
previous section. Figure 2 shows a colormap of the electron
density ne(x, τ ) vs slow time τ and coordinate x (as in Fig. 1),
while Fig. 4 shows a similar colormap but for the fluid velocity
v(x, τ ) (as in Fig. 3). After comparing Fig. 1 with Fig. 2
and Fig. 3 with Fig. 4, we can conclude that the weakly
nonlinear theory works well in modeling the original system.
This should be even clearer from Fig. 5, which compares
the maximum values over x of the electron densities ne(x, τ )
[Fig. 5(a)] and of the fluid velocities v(x, τ ) [Fig. 5(b)] in
the original fully nonlinear simulations (blue color) and in
the weakly nonlinear model (pink color). Indeed, despite a
high degree of nonlinearity, the agreement is quite decent.
Figure 5(b) also shows the absolute value of the phase velocity
of the second driving wave with k2 = −2. We can see that
the fluid velocity is below the absolute values of the phase
velocities of the driving waves, which means we are below
the wave breaking limit for the parameters chosen.

Figure 6 shows the effective actions I1, I2 [Fig. 6(a)] and
the phase mismatches �1,�2 [Fig. 6(b)] vs slow time τ =√

α1t . We can clearly see that the phase mismatches oscillate
around −π , signifying phase locking, while the effective ac-
tions I1, I2 enter the resonance at τ = 0 and then remain in the
resonance and grow rapidly.

It is known that the autoresonant phenomenon occurs only
when the driving amplitudes exceed certain threshold values;
see Refs. [40,45]. The threshold nature of the autoresonance
manifests itself for the system described in this paper as well.
As was discussed in Ref. [40], it is difficult to obtain the gen-
eral analytical result for the double autoresonance thresholds
for the systems described by Eqs. (32)–(35), and the thresh-
olds are complicated functions of α1, α2, a, b, c. However, the

FIG. 6. The effective actions I1, I2 (a) and the phase mismatches
�1, �2 (b) as functions of slow time τ = √

α1t obtained by solving
the weakly nonlinear equations (32)–(35).

threshold condition for a single-phase wave, i.e., when one
of the driving amplitudes in Eqs. (32)–(35) vanishes, is well
known [37]:

|ε1| > 1.644
√

ω1

2|a(k1, ω1)|α
3
4 , (36)

where we assumed the presence of the first drive only (ε2 = 0)
and the linear chirp rate α.

In the next section, we will use the threshold condition (36)
to estimate the experimental parameters, such as laser in-
tensity and laser pulse length required for the autoresonant
excitation of plasma and ion acoustic waves.

IV. ESTIMATES OF LASER PARAMETERS

In this section we estimate the required laser pulse inten-
sity and length necessary for autoresonant excitation of large
amplitude waves. We will make estimates of the autoresonant
excitation of both plasma waves discussed in this paper and
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of ion acoustic waves studied in Ref. [40]. Since the threshold
conditions for double autoresonance are difficult to obtain in
generality, we will consider autoresonant excitation of single-
phase waves here. Nevertheless, as indicated by numerical
simulations, the single-phase estimates should be good prox-
ies for multiphase waves as well.

A. Ion acoustic waves

First, let us consider the case of ion acoustic waves dis-
cussed in Ref. [40]. In this subsection, all the variables are as
they are defined in Ref. [40].

The ponderomotive drive can be created by launching two
co- or counterpropagating laser pulses of similar intensity and
duration with varying (chirped) frequencies; the associated
beat wave will produce the ponderomotive potential with the
required properties.

From the single-phase threshold condition [Eq. (36)], using
definitions of the dimensionless quantities from Ref. [40], we
find the following approximate condition for the autoreso-
nance in the system of ion acoustic waves:

LHS(I, λ, ne/nc, Te) > RHS(k1, α), (37)

where we introduced the functions

LHS(I, λ, ne/nc, Te) = Up[eV]

Te[eV]
, (38)

RHS(k1, α) = 1.644
√

ω1

2|a(k1, ω1)|
|k1|

2
(
ω2

1 − �2k2
1

)α
3
4 . (39)

Here Te is the initial electron temperature and Up is the pon-
deromotive energy given by

Up[eV] = 9.33 × 10−14I
[ W

cm2

]
λ2[μm]

√
1 − ne

nc
, (40)

where I is the laser intensity, λ is the laser wavelength, and
ne/nc is the ratio of the initial electron density to the critical
plasma density. Inside the function RHS(k1, α) [Eq. (39)] we
have the dimensionless wave vector k1 (measured in units
of the inverse Debye length λ−1

D ) and the dimensionless fre-
quency ω1 (measured in units of the ion plasma frequency ωpi)
given by the linear ion acoustic wave dispersion relation (see
Ref. [40]); the definitions of a(k1, ω1), ω1, k1, �, and α are
from Ref. [40].

Figure 7 shows the LHS given by Eq. (38) for different
values of the laser intensity I and the RHS given by Eq. (39)
for different values of chirp rate α as functions of dimen-
sionless k1 (measured in λ−1

D ) for λ = 1 μm, ne/nc = 10−2,
Te = 30 eV, and cold ions (� = 0). For the autoresonance to
occur, the RHS for given values of α and k1 must be below the
horizontal line representing the LHS for a given value of I .

We note that one must take into account additional phys-
ical restrictions on the accessible values of k1. For example,
to avoid strong Landau damping, k1 cannot be too large.
We now estimate the required laser intensity for two real-
istic values of the dimensionless wave vector k1 = 0.1 and
k1 = 1. We see from Fig. 7 that for the chosen parameters,
if k1 = 0.1, autoresonance occurs when the laser inten-
sity exceeds I ≈ 1014 W/cm2 for α = 10−3, I ≈ 1013 W/cm2

for α = 10−4, and I ≈ 1012 W/cm2 for α = 10−5, while if

FIG. 7. Approximate thresholds for autoresonant excitation of
single-phase ion acoustic waves. The figure shows the LHS(I, λ =
1 μm, ne/nc = 10−2, Te = 30 eV) given by Eq. (38) for different
values of the laser intensity I [I = 1011 W/cm2 (solid black), I =
1012 W/cm2 (dashed black), I = 1013 W/cm2 (dash-dotted black),
and I = 1014 W/cm2 (dotted black)] and the RHS(k1, α) given by
Eq. (39) for different values of chirp rate α [α = 10−5 (solid blue),
α = 10−4 (dashed orange), and α = 10−3 (dash-dotted green)] as
functions of k1. For the autoresonance to occur, the RHS must be
below the horizontal line representing the LHS.

k1 = 1, the intensity should exceed I ≈ 1013 W/cm2 for α =
10−3, I ≈ 1012 W/cm2 for α = 10−4, and I ≈ 1011 W/cm2

for α = 10−5.
Now let us estimate the laser duration required to au-

toresonantly excite large amplitude waves. Since the electron
density in Ref. [40] can be approximated as eϕ , we can esti-
mate in the leading linear order the relative density increase as
(δne)1 ≈ (δϕ)1 ≈ C10. Then, using the asymptotic solution for
the effective action Ī1 ≈ [α/|a(k1, ω1)|]t and its connection
with C10 (see definitions of Ref. [40]), we can estimate the
dimensionless laser pulse length (measured in units of ω−1

pi )
required to reach (δne/ne)1 as

tpulse =
[(

δne

ne

)
1

]2 2ω1k2
1(

ω2
1 − �2k2

1

)2

|a(k1, ω1)|
α

, (41)

where the definitions of a(k1, ω1), ω1, k1, �, and α are from
Ref. [40].

Figure 8 plots the pulse length determined by Eq. (41) in
picoseconds as a function of chirp rate α for (δne/ne)1 = 0.25
for k1 = 0.1 (orange line with triangle markers) and k1 = 1
(blue line with circle markers). Other parameters are the same
as in Fig. 7, namely, λ = 1 μm, ne/nc = 10−2, Te = 30 eV,
� = 0. We can see that for α = 10−4 the laser pulse length
of tpulse ≈ 10–100 ps is required, while for α = 10−3 the laser
pulse length of tpulse ≈ 1–10 ps should be sufficient.

We note that the chosen linear increase in the relative
density (δne/ne)1 = 0.25 corresponds in practice to large den-
sity fluctuations on the order of δne/ne ∼ 1. We also note
that even though for the two-phase case there are additional
restrictions on the values of ε1, ε2, α1, α2, k1, and k2, the
actual requirements for the laser intensity and duration can be
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FIG. 8. Estimate of the laser pulse length required for the au-
toresonant excitation of nonlinear waves. The figure shows tpulse

given by Eq. (41) in picoseconds required for (δne/ne)1 to reach 0.25
in autoresonant excitation of ion acoustic waves (IAW) for k1 = 0.1
(orange line with triangle markers) and k1 = 1 (blue line with circle
markers) as functions of chirp rate α. In addition, the figure shows
tpulse given by Eq. (44) in picoseconds required for (δne/ne)1 to reach
0.25 in autoresonant excitation of electron plasma waves (EPW) for
k1 = 1 (green line with square markers) as a function of chirp rate α.

even lower than for the single-phase case, because the excited
electron density in the “interference” pattern of the two drives
can be larger than for the individual drives. Indeed, this can
be seen by comparing δne/ne ≈ 0.2 [Figs. 1(b) and 1(c)] for
a single-phase excitation with δne/ne ≈ 0.8 [Fig. 1(a)] for a
two-phase excitation.

Thus, we can expect that the laser intensities on the order of
I ≈ 1012–1014 W/cm2 and the laser duration on the order of
tpulse ≈ 1–1000 ps should be sufficient to autoresonantly drive
a single-phase ion acoustic wave.

B. Electron plasma waves

Now we can make similar estimates but for the case of elec-
tron plasma waves discussed in this paper. In this subsection,
all the variables are as they are defined in the current paper.

The single-phase threshold condition (36) can again be
presented in the form given by Eq. (37), but with the following
definitions for the functions LHS and RHS:

LHS(I, λ, ne/nc, Te) = Up[eV]

meω2
p/k2[eV]

, (42)

RHS(k1, α) = 1.644
√

ω1

2|a(k1, ω1)|
1

2|k1|α
3
4 . (43)

Here Up is the ponderomotive energy given by Eq. (40). Inside
the function RHS(k1, α) [Eq. (43)] we have the dimension-
less wave vector k1 (measured in k) and the dimensionless
frequency ω1 (measured in units of the electron plasma
frequency ωp) given by the linear plasma wave dispersion
relation [Eq. (6)]; the definition of the function a(k1, ω1) is
from Appendix B, while ω1, k1, κ , �, and α are as they are
defined in this paper.

FIG. 9. Approximate thresholds for autoresonant excitation
of single-phase electron plasma waves. The figure shows the
LHS(I, λ = 1 μm, ne/nc = 10−3, Te = 30 eV) given by Eq. (42)
for different values of the laser intensity I [I = 108 W/cm2

(solid black), I = 109 W/cm2 (dashed black), I = 1010 W/cm2

(dash-dotted black), and I = 1011 W/cm2 (dotted black)] and the
RHS(k1, α) given by Eq. (43) for different values of chirp rate α

[α = 10−5 (solid blue), α = 10−4 (dashed orange), and α = 10−3

(dash-dotted green)] as functions of k1. For the autoresonance to
occur, the RHS must be below the horizontal line representing the
LHS.

Figure 9 shows the LHS given by Eq. (42) for different val-
ues of the laser intensity I and the RHS given by Eq. (43) for
different values of chirp rate α as functions of the dimension-
less k1 (measured in units of k) for λ = 1 μm, ne/nc = 10−3,
Te = 30 eV, κ = 0.1. Since we consider in this estimate the
threshold for one wave, we measure k1 in the wave vector of
the drive; thus, the relevant value of k1 is k1 = 1. We see from
Fig. 9 that autoresonance should occur if the laser intensity
exceeds I ≈ 1010 W/cm2 for α = 10−3, I ≈ 109 W/cm2 for
α = 10−4, and I ≈ 108 W/cm2 for α = 10−5.

As in the case of ion acoustic waves, we can estimate the
required laser pulse duration for the autoresonant excitation of
electron plasma waves. In the leading linear order, the relative
density increase is (δne)1 ≈ k1Ã10. Then, using the asymptotic
solution for the effective action Ī1 ≈ [α/|a(k1, ω1)|]t and its
connection with Ã10, we can estimate the dimensionless laser
pulse length (measured in units of ω−1

p ) required to reach
(δne/ne)1 as

tpulse =
[(

δne

ne

)
1

]2 2ω1|a(k1, ω1)|
αk2

1

, (44)

where the definition of the function a(k1, ω1) is from Ap-
pendix B, while ω1, k1, κ , �, and α are as they are defined
in this paper.

Figure 8 plots the pulse length determined by Eq. (44) in
picoseconds as a function of chirp rate α for (δne/ne)1 = 0.25
(green line with square markers). Other parameters are the
same as in Fig. 9, namely, λ = 1 μm, ne/nc = 10−3, Te =
30 eV, κ = 0.1. We can see from Fig. 8 that for α = 10−5

the laser pulse length of tpulse ≈ 100 ps is required, for α =
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10−4 the pulse length is estimated as tpulse ≈ 10 ps, and for
α = 10−3 the pulse length of tpulse ≈ 1 ps should be sufficient.

Thus, we can expect that the laser intensities on the order
of I ≈ 109–1011 W/cm2 and the laser duration on the order of
tpulse ≈ 1–100 ps should be sufficient to autoresonantly drive
a single-phase electron plasma wave.

V. CONCLUSIONS

We have shown how to use phase locking (autoreso-
nance) with small amplitude chirped-frequency ponderomo-
tive drives to create and control strongly nonlinear two-phase
plasma waves. The drives can be controlled independently as
long as the conditions for the double autoresonance are met.
We have illustrated these nonlinear two-phase waves through
fully nonlinear numerical simulations. Using Whitham’s av-
eraged Lagrangian procedure we analytically developed a
reduced set of ordinary differential equations for the am-
plitudes and phases of the waves. This analytical weakly
nonlinear theory is necessary to understand how to choose the
appropriate parameters to drive and control such two-phase
structures.

Similar to the case of ion acoustic waves [40], the
autoresonantly excited multiphase waves form coherent spa-
tiotemporal quasicrystalline structures, whose properties as
accelerating structures and optical elements require further

investigation. These nonlinear two-phase structures, have not
been seen, to our knowledge, in experiments. The autoreso-
nant excitation described here requires a balance between the
pulse amplitude and chirp rate, as given by the threshold, and
is also constrained by physics not in our model.

We have made initial estimates for the required laser in-
tensities and pulse lengths. These estimates suggest that the
autoresonant method of creating large amplitude coherent
structures in plasmas is promising but requires additional
investigation. Should the autoresonant method of exciting
plasma structures prove to be effective, it would allow for
large amplitude structures to be excited with relatively low
intensity and energy lasers. First principles models such as
particle-in-cell simulations will be necessary to further estab-
lish the practical aspects of the experimental realization of the
autoresonant electron plasma or ion acoustic waves, to gauge
the influence of other possible effects (collisional and colli-
sionless damping, various instabilities, higher dimensionality
effects, kinetic effects, such as trapping, etc.), and to study
their long-term stability.
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APPENDIX A: THE AVERAGED LAGRANGIAN DENSITY

The averaged Lagrangian density L̄ is the sum of the following terms:

〈
1
2ϕ2

x

〉
θ1,θ2

= 1
4 k2

1C2
10 + 1

4 k2
2C2

01 + 1
4 (k1 + k2)2C2

11 + 1
4 (k1 − k2)2C2

1,−1 + k2
1C2

20 + k2
2C2

02, (A1)

〈
1
2κ2ϕ2

〉
θ1,θ2

= 1
4κ2C2

10 + 1
4κ2C2

01 + 1
4κ2C2

11 + 1
4κ2C2

1,−1 + 1
4κ2C2

20 + 1
4κ2C2

02, (A2)

〈 − 1
2 (ψtσx + ψxσt )

〉
θ1,θ2

= 1
2ω1k1B̃10Ã10 + 1

2ω2k2B̃01Ã01 + 2ω1k1B̃20Ã20 + 2ω2k2B̃02Ã02

+ 1
2 (ω1 − ω2)(k1 − k2)B̃1,−1Ã1,−1 + 1

2 (ω1 + ω2)(k1 + k2)B̃11Ã11, (A3)

〈 − 1
2ψ2

x (1 + σx )
〉
θ1,θ2

= − 1
4 k2

1 B̃2
10 − 1

4 k2
2 B̃2

01 − k2
1 B̃2

20 − k2
2 B̃2

02 − 1
4 (k1 + k2)2B̃2

11 − 1
4 (k1 − k2)2B̃2

1,−1

− 1
2 k3

2

(
Ã01B̃01B̃02 + 1

2 Ã02B̃2
01

) − 1
2 k3

1

(
Ã10B̃10B̃20 + 1

2 Ã20B̃2
10

)
− 1

4 k1k2(k1 − k2)(Ã01B̃10B̃1,−1 + Ã1,−1B̃01B̃10 + Ã10B̃01B̃1,−1)

− 1
4 k1k2(k1 + k2)(Ã01B̃11B̃10 + Ã10B̃01B̃11 + Ã11B̃01B̃10), (A4)

〈 − 1
2�2σ 2

x

(
1 + 1

3σx
)〉

θ1,θ2
= − 1

4�2k2
1 Ã2

10 − 1
4�2k3

1 Ã2
10Ã20 − �2k2

1 Ã2
20 − 1

4�2k2
2 Ã2

01 − 1
4�2k3

2 Ã2
01Ã02 − �2k2

2 Ã2
02

− 1
4�2k1k2(k1 − k2)Ã01Ã10Ã1,−1 − 1

4�2k1k2(k1 + k2)Ã01Ã10Ã11 − 1
4�2(k1 − k2)2Ã2

1,−1

− 1
4�2(k1 + k2)2Ã2

11, (A5)

〈σxϕ〉θ1,θ2 = 1
2 k1Ã10C10 + 1

2 k2Ã01C01 + 1
2 (k1 + k2)Ã11C11 + 1

2 (k1 − k2)Ã1,−1C1,−1 + k1Ã20C20 + k2Ã02C02, (A6)

〈σxϕd〉θ1,θ2 = 1
2ε1k1Ã10 cos (�1) + 1

2ε2k2Ã01 cos (�2). (A7)
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APPENDIX B: FUNCTIONS a(k1, ω1), b(k1, ω1; k2, ω2 ), AND c(k2, ω2 )

The function a(k1, ω1) is defined via

C2
10a(k1, ω1) = − 1

2ω1
(
1 + κ2

k2
1

)2 B̃20 − ω2
1 + �2k2

1

4ω2
1k1

(
1 + κ2

k2
1

)2 Ã20, (B1)

The function c(k2, ω2) is defined via

C2
01c(k2, ω2) = − 1

2ω2
(
1 + κ2

k2
2

)2 B̃02 − ω2
2 + �2k2

2

4ω2
2k2

(
1 + κ2

k2
2

)2 Ã02, (B2)

where we note that, due to symmetry, the functions a(k1, ω1) and c(k2, ω2) should have an identical functional dependence.
The function b(k1, ω1; k2, ω2) is defined via

C10C01b(k1, ω1; k2, ω2) = − ω1ω2 + �2k1k2

8ω1ω2k1k2
(
1 + κ2

k2
1

)(
1 + κ2

k2
2

) [(k1 − k2)Ã1,−1 + (k1 + k2)Ã11]

− ω1k2 + ω2k1

8ω1ω2k1k2
(
1 + κ2

k2
1

)(
1 + κ2

k2
2

) [(k1 − k2)B̃1,−1 + (k1 + k2)B̃11]. (B3)

Here the amplitudes Ã20, Ã02, B̃20, B̃02, C20, C02, Ã11, Ã1,−1, B̃11, B̃1,−1, C11, C1,−1 should be expressed through C10, C01, k1, k2,
ω1, ω2, κ , � using Eqs. (C1)–(C12) of Appendix C, so that a(k1, ω1), b(k1, ω1; k2, ω2), and c(k2, ω2) are functions of k1, k2, ω1,
ω2, κ , � only. The dimensionless frequencies ω1 and ω2 are determined by the linear plasma wave dispersion relation [Eq. (6)].

APPENDIX C: THE SECOND-ORDER AMPLITUDES

To express the second-order amplitudes through the first-order amplitudes C10 and C01, we calculate the variations of
the averaged Lagrangian density L̄ with respect to the second-order amplitudes and, after solving the resulting system of
equations and using the linear relations (16)–(19), we obtain the expressions for the second-order amplitudes.

From variations with respect to Ã20, Ã02, B̃20, B̃02, C20, C02 and the linear relations (16)–(19), we obtain

Ã20 = −k3
1

(
4 + κ2

k2
1

)(
1 + κ2

k2
1

)2 3ω2
1 + �2k2

1

8
[
1 − (

ω2
1 − �2k2

1

)(
4 + κ2

k2
1

)]C2
10, (C1)

Ã02 = −k3
2

(
4 + κ2

k2
2

)(
1 + κ2

k2
2

)2 3ω2
2 + �2k2

2

8
[
1 − (

ω2
2 − �2k2

2

)(
4 + κ2

k2
2

)]C2
01, (C2)

B̃20 = −ω1k2
1

(
1 + κ2

k2
1

)2 2 + (
ω2

1 + 3�2k2
1

)(
4 + κ2

k2
1

)
8
[
1 − (

ω2
1 − �2k2

1

)(
4 + κ2

k2
1

)]C2
10, (C3)

B̃02 = −ω2k2
2

(
1 + κ2

k2
2

)2 2 + (
ω2

2 + 3�2k2
2

)(
4 + κ2

k2
2

)
8
[
1 − (

ω2
2 − �2k2

2

)(
4 + κ2

k2
2

)]C2
01, (C4)

C20 = k2
1

(
1 + κ2

k2
1

)2 3ω2
1 + �2k2

1

4
[
1 − (

ω2
1 − �2k2

1

)(
4 + κ2

k2
1

)]C2
10, (C5)

C02 = k2
2

(
1 + κ2

k2
2

)2 3ω2
2 + �2k2

2

4
[
1 − (

ω2
2 − �2k2

2

)(
4 + κ2

k2
2

)]C2
01. (C6)

From variations with respect to Ã11, Ã1,−1, B̃11, B̃1,−1, C11, C1,−1 and the linear relations (16)–(19), we obtain

Ã11 = k1k2

(
1 + κ2

k2
1

)(
1 + κ2

k2
2

)
[(k1 + k2)2 + κ2][(k1 + k2)(ω1ω2 + �2k1k2) + (ω1 + ω2)(ω1k2 + ω2k1)]

2{[(ω1 + ω2)2 − �2(k1 + k2)2][(k1 + k2)2 + κ2] − (k1 + k2)2} C10C01, (C7)

Ã1,−1 = k1k2

(
1 + κ2

k2
1

)(
1 + κ2

k2
2

)
[(k1 − k2)2 + κ2][(k1 − k2)(ω1ω2 + �2k1k2) + (ω1 − ω2)(ω1k2 + ω2k1)]

2{[(ω1 − ω2)2 − �2(k1 − k2)2][(k1 − k2)2 + κ2] − (k1 − k2)2} C10C01, (C8)

B̃11 = k1k2

(
1 + κ2

k2
1

)(
1 + κ2

k2
2

)
(ω1 + ω2)[(k1 + k2)2 + κ2](ω1ω2 + �2k1k2)

2{[(ω1 + ω2)2 − �2(k1 + k2)2][(k1 + k2)2 + κ2] − (k1 + k2)2}C10C01

+ k1k2

(
1 + κ2

k2
1

)(
1 + κ2

k2
2

)
(k1 + k2){1 + �2[(k1 + k2)2 + κ2]}(ω1k2 + ω2k1)

2{[(ω1 + ω2)2 − �2(k1 + k2)2][(k1 + k2)2 + κ2] − (k1 + k2)2}C10C01, (C9)
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B̃1,−1 = k1k2

(
1 + κ2

k2
1

)(
1 + κ2

k2
2

)
(ω1 − ω2)[(k1 − k2)2 + κ2](ω1ω2 + �2k1k2)

2{[(ω1 − ω2)2 − �2(k1 − k2)2][(k1 − k2)2 + κ2] − (k1 − k2)2}C10C01

+ k1k2

(
1 + κ2

k2
2

)(
1 + κ2

k2
1

)
(k1 − k2){1 + �2[(k1 − k2)2 + κ2]}(ω1k2 + ω2k1)

2{[(ω1 − ω2)2 − �2(k1 − k2)2][(k1 − k2)2 + κ2] − (k1 − k2)2}C10C01, (C10)

C11 = −k1k2

(
1 + κ2

k2
1

)(
1 + κ2

k2
2

)
(k1 + k2)[(k1 + k2)(ω1ω2 + �2k1k2) + (ω1 + ω2)(ω1k2 + ω2k1)]

2{[(ω1 + ω2)2 − �2(k1 + k2)2][(k1 + k2)2 + κ2] − (k1 + k2)2} C10C01, (C11)

C1,−1 = −k1k2

(
1 + κ2

k2
1

)(
1 + κ2

k2
2

)
(k1 − k2)[(k1 − k2)(ω1ω2 + �2k1k2) + (ω1 − ω2)(ω1k2 + ω2k1)]
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