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1. INTRODUCTION

The problem of the interaction of two spherical
particles has long history. In 1811, Poisson used
expansion into Legendre polynomials to solve the
problem of interaction of two spherical particles made
of a conducting material (see [1, 2]). Then, Kelvin
solved this problem employing the image method and
expansion into Legendre polynomials in a bispherical
coordinate system [3]. Maxwell found an interaction
potential using expansion into Legendre polynomials
in a spherical coordinate system accurate to R–22

terms, where R is the distance between particles’ cen�
ters [4]. In that work, he obtained the expansion of
Legendre polynomials with a pole located at the center
of one particle into Legendre polynomials with a pole
at the center of the other particle by differentiation
method (for detail, see [5]). Russel [6] derived expres�
sions for capacitance coefficients at small distances
between the particle surfaces, L = (R – a1 – a2). These
expressions were also obtained in [7, 8] and used to
answer the question of whether attraction exists
between the particles at short distances.

The problem of interaction of two spherical parti�
cles can only be solved in the form of a sum of an infi�
nite series, which rather slowly converges at small
interparticle distances, even if they are made of a con�
ducting material. Therefore, it is necessary to use
numerical methods and solutions can only be obtained
for particular cases. Many aspects of this interaction
and the methods for obtaining solutions for the case of
conducting balls are reflected in [7–26], while the
effect of an external homogeneous electric field on the
interaction of two uncharged and charged spherical
particles made of a conducting material was studied in
[27, 28].

Since the investigation of the interaction of dielec�
tric particles is a more complex problem, the history of
solving this problem is shorter and it was investigated
in a smaller number of works [29–40]. The authors of
[29, 30] analyzed the interaction of two identical
uncharged dielectric particles in an external electric
field. Love [29] obtained a solution for any angle
between the external field direction and the axis of
symmetry of the problem, which passes through the
centers of the particles, while Goyette [30] found a
solution only for the parallel and perpendicular direc�
tions. Stoy [31, 32] considered particles having differ�
ent sizes and different permittivities in an electric field
directed along the line connecting the centers of the
particles [31] and perpendicular to it [32]. Ymeri [33]
analyzed the case of identical particles at an arbitrary
external field direction, and the case of different parti�
cles was studied in [34]. In [29–34], the problem was
solved in a bispherical coordinate system.

Feng [35] numerically investigated the interaction
of two charged dielectric particles in contact with each
other using the Galerkin finite element method. In
[36], the problem of two charged spherical particles
was solved in a spherical coordinate system by the
reexpansion of Legendre polynomials with a pole
located at the center of one of the particles into Leg�
endre polynomials with a pole at the center of the

other particle.
1
 The authors of [37] used this method

to analyze the interaction of two uniformly charged
dielectric spheres and determined the parameter
region in which like�charged dielectric spheres attract

1 In [36], this method of solution was called the Washizu method
[41, 42]. As noted above, this method was used by Maxwell [4]
and explicit expressions for the reexpansion of Legendre poly�
nomials are given in [5].
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each other at short distances. Then, the authors of
[38–40] used the analytical model created in [37] to
study the interaction of carbon clusters and
fullerenes [38, 39], and dielectric particles in a
dielectric solvent [40].

Note that Filippov [18, 19] investigated the inter�
action of a point charge with a spherical conducting
macroparticle in a plasma; in [43], we analyzed the
interaction of a point charge with a dielectric macro�
particle in a plasma with a homogeneous external
electric field.

The purpose of this work is to solve the problem of
the electrostatic interaction of two nonuniformly
charged dielectric spherical particles of different radii
placed in a homogeneous dielectric in a homogeneous
external electric field.

2. CALCULATION OF POTENTIAL
EXPANSION COEFFICIENTS

We consider two spherical particles with radii a1
and a2, charges q1 and q2 (which are nonuniformly dis�
tributed over their surfaces in the general case), and
dielectric constants ε1 and ε2 that are placed in a
homogeneous dielectric (dielectric constant ε) and
homogeneous (before the placement of the particles)
electric field E0. A Cartesian coordinate system is
introduced so that the electric�field vector lies in plane
xz and axis z is directed along the line connecting the
centers of the particles (see Fig. 1).

We then introduce bispherical coordinates as
shown in Fig. 1 [44, 45],

x a η ϕcossin

ξcosh ηcos–
���������������������������, y a η ϕsinsin

ξcosh ηcos–
���������������������������,= =

z a ξsinh

ξcosh ηcos–
���������������������������,=

where

The electrostatic interaction of particles in a
homogeneous dielectric is determined by the Laplace
equation Δφ = 0; in the bispherical coordinates, it can
be solved by the separation of variables and the intro�
duction of a new quantity

where φ is the electrostatic field potential. The
bounded solutions of the Laplace equation in the
bispherical coordinates inside and outside the parti�
cles can be represented as follows:

(1)

(2)

(3)

The potential of a homogeneous external electric
field has the form

(4)

where E0x = E0sinθ0 and E0z = E0cosθ0. Its expansion
into Legendre polynomials in the introduced bispher�
ical coordinate system is determined by the expression

(5)
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Fig. 1. Geometry of the interaction of two macroparticles
of radii a1 and a2 in the bispherical coordinate system
(ξ, η, ϕ).
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The resulting potential in region III is the sum of
Eqs. (3) and (5) due to the principle of superposition.

The following boundary conditions result from
the continuity of the potential and the discontinuity
of the normal components of the electric displace�
ment field [46]:

(6)

(7)

where σ1 and σ2 are the surface densities of free charges
on the first and second macroparticle, respectively, and
hξ is the Lamé coefficient (see below). In the general
case, the surface densities are functions of η and ϕ.

To find the distribution of free surface charges, it is
better to use a spherical coordinate system with the
origin placed at the center of each of the particles,

(8)

where θi is the latitude of a point on the surface of the
ith particle in the spherical coordinate system with the
pole at its center and ϕ is the longitude of this point. In
the Appendix, we show that the expansion of distribu�
tion (8) into Legendre polynomials in the bispherical
coordinate system has the form

(9)

where

(10)

(11)

From the continuity condition of potential (6), we

express coefficients  and  in terms of  and
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. Then, using condition (7) and the properties of
associated Legendre functions [5] after simple but
tedious algebra, we obtain the following equations for
the potential expansion coefficients:
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methods were developed to solve such problems, and
here we use the matrix sweep and the reduction meth�
ods [47]. (In [34], the solution to this set was obtained
in the form of infinite continued fractions for the case
of uncharged particles.)

Figure 2 shows the dependences of the macroparti�
cle surface potential on the minimum distance
between the particle surfaces (L = (R – a1 – a2) for the
case of a high dielectric constant (ε1 = ε2 = 105) for
particles with the same and different radii. At such a
high dielectric constant, the particles behave like
metallic particles; therefore, the potential remains
almost unchanged over the entire macroparticle sur�
face. (The data for η = 0 and π, where the potential has
extreme values, almost coincide. For example, at L =
10–7 cm, the ratio of the near�surface potentials in the
case of particles of the same size at η = 0 and π differs
from unity by 8.4 × 10–6.) These data agree well with
the similar curve for metallic macroparticles from [18,
19]. We now calculate the interparticle interaction
force.

3. CALCULATION OF THE INTERACTION 
FORCE

To calculate the resultant force applied to a dielec�
tric body, we can use the Maxwell stress tensor [46]
(calculations are performed for the first particle,
which is located on the side of positive values of axis z;

therefore, the repulsive force from the second particle
is positive for it and the attractive force is negative),

(19)

where

(20)

and e is the orthonormal basis vectors. Note that

For the force on the first particle, from Eqs. (19)
and (20) we find (all quantities in the formulas are
assumed to be taken at ξ = ξ1)
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where hξ, hη, and hϕ are the Lamé coefficients. In the
bispherical coordinate system they are expressed as
[45]
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Using the properties of the associated Legendre
polynomials [5, 44, 45, 48, 49], after tedious algebra
we express the force of interaction of nonuniformly
charged dielectric spheres in a homogeneous dielectric
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Fig. 2. Macroparticle surface potentials vs. the minimum
distance between the particle surfaces at (1) a1 = a2 =

10 μm and q1 = q2 = 103e; (2), (3) a1 = 10 μm, a2 = 1 μm,

q1 = 103e, and q2 = 102e ((2) surface potential of the larger
particle, (3) that of the smaller particle). (solid curves)
Calculations performed in this work at ε1 = ε2 = 105 for
η = 0, (symbols) calculations for macroparticles made of a
conducting material at ε1 = ε2 = ∞ according to [18, 19].
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in the presence of a homogeneous external electric
field as

(25)

(26)

(27)

Here,  = Cl – (2l + 1) aE0z,  =  – 2 aE0x,

 = ,  = , and m > 1, and we assume that

 =  and  =  at m = 0.
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Eqs. (25)–(27) that only the z component of the force
is nonzero,

(28)

4. ATTRACTION OF LIKE AND UNIFORMLY 
CHARGED PARTICLES

The repulsion between like�charged particles can
turn into their attraction at short distances because of
mutually induced charges on their surfaces. For exam�
ple, it is known that, in the case of interaction of a
point charge with a like�charged conducting or dielec�
tric sphere, they begin to attract each other at short
distances [45]. Further, we will study the interaction of
two dielectric spherical particles having the same sign
charges uniformly distributed over their surfaces. For
definiteness, we assume ε = 1.

Figure 3 shows the dependence of the interaction
force of the same�size particles with ε1 = ε2 = 25 on the
minimum distance between the macroparticle sur�
faces for various ratios of the charges. Negative forces
correspond to attraction and positive forces to repul�
sion. It is seen that, as the ratio of charges increases,
the repulsion of like�charged macroparticles changes
into attraction. For the dielectric constant under
study, this change occurs at q1/q2 = 1.5–2 (more spe�
cifically at q1/q2 ≈ 1.556; as the ratio of charges
decreases, this change takes place at q1/q2 ≈ 0.6426,
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Fig. 3. Interaction force between uniformly charged dielec�
tric spheres in vacuum (ε = 1) vs. the minimum distance
between their surfaces L = R – a1 – a2 for various ratios of

their charges at a1 = a2 = 10–3 cm, q1 = 103e, and ε1 = ε2 =
25: q1/q2 = (1) 1.0 (2) 1.5, (3) 2.0, (4) 2.5, and (5) 3.
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which is the reciprocal of the previous number (see
below)).

Figure 4 shows how the interaction of two spheres
of the same radius and a charge ratio q1/q2 = 3 changes
with their dielectric constant. It is clear that an
increase in the dielectric constant leads to a decrease
in the repulsive force at long distances and to the
change of repulsion into attraction at short distances

(this change takes place at a dielectric constant
between 5 and 10), and the attractive force increases
with the dielectric constant. It is also seen that, at a
high dielectric constant, the force almost coincides
with the force of metallic particles.

Figure 5 shows the interaction force of dielectric
particles with ε1 = ε2 = 25 and charges q1 = 3q2 for var�
ious ratios of their radii. It is seen that the effect of
attraction disappears and again appears as the ratio of
radii a1/a2 increases. This behavior becomes clear
from Fig. 6, which shows (for several dielectric con�
stants of the particles) the curves bounding the param�
eter region in the (a1/a2, q1/q2) plane where the attrac�
tion of like�charged dielectric particles does not man�
ifest itself (this region lies between the curves having
indices 1 and 2 at the same letter for each dielectric
constant). Curve 3 in Fig. 5 corresponds to the point of
intersection of curve C2 with the straight line q1/q2 = 3
in Fig. 6, and curve 5 corresponds to the point of inter�
section of this straight line with curve C1.

We now show that the boundaries of the region
where attraction effects are absent are only deter�
mined by the ratios of the radii and the charges of uni�
formly charged particles. To this end, we write equa�
tions to calculate the potential expansion coefficients
for the case of a uniform distribution of a free charge
over the particle surfaces in a medium without an
external electric field. Then, dividing the obtained

equations by 2 ε  and using Eqs. (12)–
(16), for the case under study we find

2 q1q2/a1a2

1 κ1–( )le
ξ1C̃

˜
l 1– 1 κ1+( )le

2lξ1D̃
˜

l 1––

10−5
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0
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−0.5

Fig. 4. Interaction force between uniformly charged
dielectric spheres in vacuum vs. the minimum distance
between their surfaces for various dielectric constants at
a1 = a2 = 10 μm, q2 = 103e, and q1 = 3q2: ε1 = ε2 = (1) 2

(2) 5, (3) 10, (4) 25, and (5) 103. (6) Calculations for
metallic particles (ε1 = ε2 = ∞) according to [18, 19].
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Fig. 5. Interaction force between spherical particles in vac�
uum (ε = 1) vs. the minimum distance between their sur�
faces for various ratios of their radii a1/a2 at a2 = 10 μm,

q1 = 3q2, q2 = 103e, ε1 = ε2 = 25: a1/a2 = (1) 1 (2) 1.3,
(3) 1.425, (4) 1.828, (5) 2.345, (6) 2.6, and (7) 3.0.
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Fig. 6. Curves separating the regions of attraction and
repulsion of like and uniformly charged macroparticles in
the (a1/a2, q1/q2) plane for various values of their dielectric
constants. Attraction is absent at any distances in the
region between curves A1 and A2, B1 and B2, and so on.
κ1 = κ2 = (A1, A2) 5, (B1, B2) 10, (C1, C2) 25, (D1, D2) 81,
and (dot�and�dash lines) 1000. Curve E corresponds to
Eq. (35) for conducting macroparticles. (F1, F2) Digitized
data for κ1 = κ2 = 25 from [37].
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(29)

(30)

where new coefficients and relative dielectric con�
stants are introduced,

(31)

Allowing for the fact that

from Eqs. (29) and (30) we obtain

(32)

When substituting Eqs. (31) and (32) into Eq. (28), we
find

(33)

where f is the unknown function of the arguments. As
follows from Eq. (33), the presence or absence of
attraction at short distances depends only on relative
quantities q1/q2, a1/a2, κ1, and κ2 rather than on their
absolute values (of course, the force depends on
them). Since the exact boundary is determined by the
equation F1z = 0 at L = 0, its position is a function of
only q1/q2, a1/a2, κ1, and κ2.

It is seen in Fig. 6 that, as the dielectric constant
increases, the region where attraction is absent nar�
rows gradually and transforms into a curve with a zero

+ 1 κ1–( ) ξ1sinh 2l 1+( ) ξ1cosh–[ ]C̃
˜
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area for conducting particles (ε1, 2  ∞). This prob�
lem for conducting particles was studied in detail in [8]
using asymptotic expressions for capacitance coeffi�
cients at L  0 [6, 7],

(34)

where ψ(z) = d lnΓ(z)/dz is the logarithmic derivative
of the gamma function (or digamma function) and γ is
the Euler constant (γ = 0.5772156649…).

Lekner [8] showed that attraction does not mani�
fest itself if spherical conductors have charges at the
ratio that would be observed if they were in electrical
contact with each other, when the potentials of their
surfaces become exactly equal to each other. Using the
capacitance coefficients given above, we can find the
electric field energy, differentiate it, and see that the
interaction force becomes repulsive only under the
condition [8]

(35)

Grashchenkov [21] concluded that attraction always
manifests itself when the ratio of the charges of con�
ducting spheres differs from the ratio of their charges
after they are brought into electrical contact. He found
the condition of equality of the surface potentials,

(36)

which exactly transforms into Eq. (35) after the substi�
tution of Eqs. (34).

It is seen in Fig. 6 that the regions where attraction
manifests itself at short distances and the region where
like�charged particles undergo only repulsion are sep�
arated by two curves. We now introduce quantity y =
a1/a2 and designate these curves as y1(x) and y2(x),
where x = q1/q2. The position of a zero point should
not change at κ1 = κ2 during the permutation of the
particles because of the equality of the forces on the
first and second particles. Therefore, the relations

should occur between these functions. Indeed, at cer�
tain q1/q2 = x, the boundary between the regions lies at
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points a1/a2 = y1(x) and a1/a2 = y2(x); upon the per�
mutation of the particles at q2/q1 = x–1, it lies at points

a2/a1 = (x) and a2/a1 = (x). Figure 7 shows the

y1(x) and (x–1) curves that are coincident (in the
case of conductors, this coincidence is clearly visible
from Eq. (35)). It is also visible that the behavior of the
curves is similar and they are close to straight lines
when the ratio of particle charges changes at various
dielectric constants (this is true of only the range of the
ratio of the radii under study). Therefore, they can be
presented in the form

and the power α ≈ 0.56 remains almost the same for
different dielectric constants of the particles, while
coefficient k increases with decreasing ε1 and ε2.

Figure 8 shows the product of functions x1(y) and
x2(y–1), which are the reciprocal functions of y1(x) and
y2(x). This product is seen to be close to unity; how�
ever, as the ratio of the radii increases or decreases, the
difference from unity increases and becomes slightly
larger than 0.1% at a1/a2 = 0.1 and 10 for ε1 = ε2 = 81.
Note that the data in Figs. 6–8 were calculated with
the maximum number of terms taken into account to
calculate the force (lmax = 216) at the minimum dis�
tance between the particle surfaces L = 10–9 cm. The
values of ratio q1/q2 at which the force becomes zero at
a given ratio of the radii was determined at a2 = 10 μm
and q2 = 103e, where e is the elementary charge. The
difference of the product of functions x1(y) and x2(y–1)
from unity is related to the fact that the roots of the

y1
1– y2

1–

y2
1–

y1 x( ) kxα
, y2 x( ) k 1– xα

,= =

equation F1z = 0 were found at a finite distance (L =
10–9 cm) rather than for contact between the particles.
The force is still positive for an “exact” ratio of the
charges at the boundary of the regions at this distance.
For a constant interparticle distance, the reduced dis�

tances  = L/  for a1/a2 = 0.1 and a1/a2 = 10
differ by an order of magnitude. If the boundary is cal�

culated at  = 10–6, the maximum difference (in
absolute value) of the product x1(y)x2(y–1) from unity
in the range 0.1 ≤ y ≤ 10 is 3.8 × 10–8 (also see Table 1).

This high accuracy of determining the product
x1(y)x2(y–1) does not allow us to judge about the accu�
racy of determining the boundary position and only
indicates that the position of the point where the force
becomes zero is only determined by the ratios of the
radii and charges. For example, Filippov [18] showed
that, at a1 = a2 and q1/q2 = 1.0035, attraction between
conducting spheres appears at a distance L � 10–10 cm
(see Fig. 12 in [18]), although repulsion is absent at all
distances only for the exact equality q1 = q2.

The data in Table 1 can be used to estimate the
accuracy of determining the position of the boundary.
As the reduced distance decreases, the relative accu�
racy of determining the ratio of charges at the bound�

ary increases and becomes better than 0.05% at  =
10–6. (Note that Table 1 gives the ratios of charges at
the boundaries only to the seventh digit and that quan�
tities f1, f2, and f3 were calculated from the initial ratios
of the charges, which were accurate to the fifteenth
decimal digit.)

The authors of [37] also determined the boundaries
of attraction and repulsion regions. However, these
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Fig. 7. Boundaries of the regions of attraction and repul�
sion of like and uniformly charged macroparticles on the
logarithmic scale. (1)–(4) y1(x) curves and (symbols)

(x–1) curves. (1) and symbols (�) for ε1 = ε2 = 5, (2)

and (�) 10, (3) and (�) 25, (4) and (�) 81, and (5) curve
according to Eq. (35) for conducting macroparticles.
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Fig. 8. Product of the x1(y) and x2(y–1) functions that
determine the boundaries of the regions of attraction and
repulsion of like and uniformly charged macroparticles in
the (y = a1/a2, x = q1/q2) plane for various values of their
dielectric constants.
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results differ noticeably from our data (see Fig. 6) and
are not symmetric with respect to the permutation of

the particles.
2 It is seen that curves F1 and F2 differ

rather strongly from curves C1 and C2, and that F2 even
intersects the curve for conducting particles. It should
also be noted that there is a q2/q1 region (up to 2 at κ1 =
κ2 = 2) in which no attraction between the particles
occurs at a2 = 0 (see Fig. 6 in [37]). Meanwhile, it is
well known [45, 48] that attraction between point and
dielectric particles of a spherical shape is absent only if
ε1 ≤ ε, i.e., at κ1 ≤ 1, and that attraction at short dis�
tances inevitably takes place at κ1 > 1. Then, at κ1 =
κ2 = 1000, the interaction force of dielectric particles
differs insignificantly from the case of conducting par�
ticles, and the curves separating attraction and repul�
sion regions should be close to curve E, which takes
place in Fig. 6 in this work. In [37], the repulsion
region for this dielectric constant is much wider.

The problem in [37] was solved in the spherical
coordinate system, which led to an ordinary set of
equations for determining the coefficients of multi�
pole expansion of the potential. Table 2 gives the

reduced forces (determined as  = F1za1a2/q1q2) for
two identical dielectric particles with κ1 = κ2 = 2 and
κ1 = κ2 = 1000. In this work, the calculations are per�
formed at lmax = 216 (as the number of terms increases
to lmax = 217, the reduced force changes only by unity

2 Although the boundaries of attraction and repulsion regions in
[37] were constructed in plane (a2/a1, q2/q1), this fact is insig�
nificant in the light of the considerations given above for the
symmetry of the boundaries relative to the permutation of the
particles.

F̃1z

in the last digit of the numbers given in Table 2). A
comparison of the data given in Table 2 demonstrates
that the accuracy of determining the reduced force in
[37] was rather high, at least for particles of the same
size, and the causes of the inaccurate determination of
the boundaries of attraction and repulsion regions in
[37] remain unclear. Note that we have

for conducting spheres of the same size and charge [3,

8] and that the calculations at ε1 = ε2 = 105 yield  =
0.153728821 at L = 10–10 cm, which allows us to judge
about the accuracy of the calculations performed in
this work. The calculations executed using the expres�
sions presented in [18, 19] for conducting particles

(ε1 = ε2 = ∞) yield  = 0.153725458 at the same
number of expansion terms and the same interparticle
distance, which allows us to estimate the difference
between the forces at L = 0 and L = 10–10 cm.

F̃1z F1z
a1a2

q1q2

�������� 4 2ln 1–

24 2ln
2

����������������� 0.153725465= = =

F̃1z

F̃1z

Table 1. Ratio of the charges at the upper and lower boundaries of the regions with attraction at short distances and without
attraction at any distances for various values of the reduced distance between the surfaces of dielectric particles with κ1 =
κ2 = 81, lmax = 217 terms taken into account, and a2 = 10–3 cm

L/ 10–7 10–6 10–5 10–4 10–3

a1 = 0.1a2 x1 0.011231 0.011226 0.011177 0.010824 0.009398

(y = 0.1) x2 54.51514 54.49613 54.31719 53.04312 48.03530

a1 = 0.1a2 x1 0.830659 0.830513 0.829102 0.817913 0.765078

(y = 1) x2 1.203864 1.204076 1.206124 1.222623 1.307056

a1 = 10a2 x1 0.018344 0.018350 0.018410 0.018853 0.020818

(y = 10) x2 89.04120 89.08239 89.47332 92.38390 106.40605

1.899 6.429 –2.572 3.284 –0.661

4.881 –5.095 –2.521 2.701 –1.702

0.250 1.847 –3.416 –2.692 –0.946

Note: a f1 = [x1(y = 1)x2(y = 1) – 1] × 1011, b f2 = [x1(0.1)x2(10) – 1] × 109, c f3 = [x1(10)x2(0.1) – 1] × 109. 

a1a2

f1
a

f2
b

f3
c

Table 2. Reduced force of interaction (F12a1a2/q1q2) of two
identical spherical particles at L = 10–10 cm with lmax = 216

terms taken into account in the calculation in this work and
at L = 0 and n = 30 terms of the multipole expansion of the
potential in [37]

This work [37]

κ1 = κ2 = 2 0.210013282363 0.2100132974

κ1 = κ2 = 1000 0.153866817435 0.153866795
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CONCLUSIONS

We solved the problem of the interaction of two
spherical dielectric particles in a homogeneous dielec�
tric using bispherical coordinates. We derived an ana�
lytical expression for the potential and the force of
interaction of two spherical particles in the most gen�
eral case of a nonuniform free�charge distribution over
their surfaces in the presence of a homogeneous exter�
nal electric field. The interaction of particles of differ�
ent sizes and different charges was studied in detail at
several dielectric constants of the particle material for
a uniform free�charge distribution. As a result, the
parameter region in which the repulsion of like�
charged particles changes into their attraction at short
interparticle distances was determined.

APPENDIX

Derivation of the Expansion of a Surface Charge
in the Bispherical Coordinate System

To obtain Eq. (9), we use the approach proposed in

[50]. Since the product (cosθi) is a harmonic
function, it can be represented in the bispherical coor�
dinate system as

(37)

where Ri is the radius vector from the center of the ith
particle to the point of observation and θi is the angle
between this radius vector and the positive direction of
axis z.

To find expansion coefficients , we consider the

limit η  0. In this limit, for 0 <  < ξi we have

.

Allowing for the limit

we can rewrite Eq. (37) as

(38)

Here, (1) is the mth derivative of Legendre poly�
nomials for the argument equal to unity,

(39)
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Finally, we derive Eq. (11) by expanding the expres�

sion in the left�hand side of Eq. (38) in powers of .
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