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1. INTRODUCTION

A dusty plasma is a convenient object for studying
the properties of strongly coupled systems [1–3].
Many properties of such systems are determined by
the interaction potential of charged macroparticles. In
[4], we studied the interaction of a point charge with a
charged conducting spherical body in a plasma by tak�
ing into account the Debye screening. We established
that the interaction in the case where the spherical
macroparticle charge remains constant during the
approach differs greatly from the case where the sur�
face potential remains constant. Here, this problem is
generalized to the case of a dielectric macroparticle.
We consider the general case of a nonuniform distribu�
tion of free charge on the macroparticle surface. For a
constant macroparticle surface potential, the dielec�
tric properties of the macroparticle play no role what�
soever, and this problem, basically, has already been
solved in [4]. Therefore, in this paper, we consider only
the case of a constant macroparticle charge. A non�
uniform charge distribution can be maintained, for
example, during the photoemission charging of dust
particles by an external source of ultraviolet radiation
or on dust particles levitating in the near�electrode
layer of an RF discharge or in the cathode layer or
strata in DC discharges, where electrostatic traps for
dust particles are formed and there are strongly
directed ion flows. The torque of the electrostatic
forces acting on a macroparticle in a plasma was also
determined.

2. THE FIELD OF A CHARGED 
MACROPARTICLE AND A POINT CHARGE

IN PLASMA

Consider the interaction between a spherical mac�
roparticle with radius a1 and dielectric permittivity ε1
and a point particle with charge q2. Since under labo�
ratory conditions dust particles usually levitate in
regions with a sufficiently strong electric field that
compensates the action of gravity, we will also include
a constant electric field E0 in our analysis. Let us
choose the origin of a Cartesian coordinate system at
the macroparticle center, direct the z axis along the
line connecting the particle centers, and direct the x
axis in such a way that the vector E0 lies in the xz plane.
Let us also introduce spherical coordinates, as shown
in Fig. 1.

Suppose that there are no free space charges in
region I (r < a1). Therefore, the electric field potential
in this region is defined by the Laplace equation [5]

(1)

In region II (r > a1), we will seek a self�consistent
potential of the macroparticle and plasma based on a
linearized Poisson–Boltzmann equation [6]:

(2)

where kD is the reciprocal Debye length. Since the
problem under consideration is linear, the total poten�
tial can be represented as

(3)

where φ0 = –E0 ⋅ r = –E0rcosβ is the constant electric
field potential, β is the angle between the vectors E0
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and r, and φ2 is the self�consistent potential of a point
particle in a plasma. The potential of a point particle in
an equilibrium plasma is known to be the Debye one [6]:

(4)

Note that ε ≈ 1 in a plasma, but the dielectric permit�
tivity of the medium ε in electrolytes or biological sys�
tems can differ from unity.

The boundary conditions for our problem are [5]
(5)

(6)

where σ is the macroparticle surface charge density.
The solutions of Eqs. (1) and (2) that are finite at

zero and become zero at infinity in spherical coordi�
nates are known to be [5, 7, 8]

(7)

(8)
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where Kn + 1/2 are modified Bessel functions of the sec�
ond kind or half�integer�order Macdonald functions,

and  are associated Legendre polynomials. Note
that here the associated Legendre polynomials are
defined without the Shortley–Condon factor (for

example,  = sinθ).

Let us expand the potential distribution for a point
charge in a plasma (4) in terms of Legendre polynomi�
als using Macdonald’s formula [8], which at r ≤ R is

(9)

where In + 1/2 are modified Bessel functions of the first
kind or half�integer�order Infeld functions,

The constant field potential is expanded as

(10)

Here, the angle θ0 specifies the direction of the vector
E0 in our spherical coordinate system (note that in our
chosen coordinate system the azimuthal angle ϕ0 = 0
for E0, see Fig. 1).

We will also expand the macroparticle surface
charge density in terms of spherical harmonics:

(11)

As a result, from the first boundary condition (5) we
find
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Fig. 1. Geometry of the point charge–macroparticle inter�
action problem: r, θ, ϕ are the coordinates of the point of
observation in a spherical coordinate system with the ori�
gin at the macroparticle center; r2, θ2, ϕ are the coordi�
nates of the point of observation in a spherical coordinate
system with the origin at the location of the point charge;
R is the interparticle distance; q1, q2 are the particle
charges in elementary charges; E0 is the constant electric
field vector lying in the xz plane; θ0 is the angle specifying
the direction of E0 in the spherical coordinate system with
the origin at the macroparticle center; β is the angle
between the vectors E0 and r.
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Here . Using Eqs. (12)–(15), from the sec�
ond boundary condition (6) we obtain

(16)

(17)

(18)

(19)

Here, for convenience, we introduced the function

(20)

3. THE FORCE AND INTERACTION 
POTENTIAL OF A MACROPARTICLE

AND A POINT CHARGE

The interaction potential of macroparticles in an
isothermal plasma with a constant number of elec�
trons and ions coincides with the free energy [9, 10].
To find the latter, let us first calculate the interaction
force. The force acting on a point charged particle
from a second finite�size particle can be calculated
fairly easily (here, we do not consider the force acting
on the macroparticle from a constant electric field,
q1E0, because we assume it to be balanced by the force
of gravity):

(21)

Hence, using Eq. (8), after simple calculations, for the
z component of the force we find

(22)

The interaction potential does not depend on the
path of integration. Therefore, integrating (22) over

ã1 kDa1=

A1
0 3q2

ε R
���������K3/2 R̃( )M3/2 ã1 ε ε1, ,( )=
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the interparticle distance, we will obtain an expression
for the interaction potential:

(23)

Here, UDLVO is the Derjaguin–Landau–Verwey–
Overbeek (DLVO) potential (see, e.g., [4]):

(24)

UE0 is the interaction potential of the surface charge
induced by a constant external electric field with the
point charge:

(25)

The third term on the right�hand side of Eq. (23) is the
contribution from the interaction of the nonuniform
surface charge with the point charge; the fourth term
is the contribution from the interaction of the point
charge with the surface charge induced by it.

For the interaction potential of a point particle and

a uniformly charged macroparticle  = q1/4π  at
E0 = 0, we obtain

(26)

Note that in the case of ε1  ∞, i.e., if the macropar�
ticle is a conductor, the formula
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follows from (26). At ε = 1, it is transformed into the
formula for the interaction potential of a conducting
sphere and a point charge from [4].

If the interaction is considered in the absence of a
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fied Bessel functions at small arguments (see [8]),
from (21) and (26) we find

(28)

(29)

These expressions coincide with those for the force
and interaction potential of a point charge with a
dielectric sphere in a uniform dielectric [5].

4. NONUNIFORM DISTRIBUTION
OF FREE CHARGE

OVER THE MACROPARTICLE SURFACE

4.1. The Force and Interaction Potential

Let us now consider the case where there is a non�
uniform charge distribution on the macroparticle sur�
face. Since the charge on the macroparticle is pro�
duced by the flows of electrons and ions whose asym�
metry is caused by the action of an electric field in the
macroparticle levitation region, suppose that the
charge distribution is axisymmetric along the constant
electric field vector:

Using the addition theorem for Legendre polynomials
[11], for such a charge distribution we find

(30)

Below, we will dwell only on the case of a charge
distribution with a predominance of the monopole
and dipole moments, i.e., when σ = σ0 + σ1cosβ. In
this case, from Eqs. (21) and (23) we find (note that
Fy ≡ 0 for any axisymmetric charge distribution along
the constant electric field vector, while an expression
for the z component of the force can be easily derived
from (22)):
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where
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4.2. The Torque Acting on a Macroparticle

Under the assumption that the medium is in
mechanical and thermal equilibrium, the following
specific torque acts on a dielectric surface element
[12]:

(34)

Using the recurrence relations for associated Leg�
endre polynomials and their derivatives [11], for the

projections of the torque on the Cartesian axes we find
1
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1 The calculation of the integrals is greatly simplified if we note
that the vector in parentheses on the right�hand side of (34), to
within a factor, is a result of the action of the orbital angular
momentum operator on the electrostatic field potential, while
the projection of this vector on the Cartesian coordinate axes is a
result of the action of the corresponding projections of this oper�
ator on ϕ [13].
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(37)

For an axisymmetric (along the external field) dis�
tribution of free charge over the dust particle surface,
from (35) and (37) we obtain

Mx = Mz = 0,

while the expression for the torque along the y axis will
take the form

(38)

Under the action of only the external field (q2 = 0),
from (35)–(37) we find
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����������������������������������������������������������������.

My
q2

2
���

4πn n 1+( )σn
1a1

3/2
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5. DISCUSSION

In Figs. 2 and 3, the potential energy of the interac�
tion is plotted against L = R – a1, the smallest distance
between the macroparticle surface and the point
charge, in various screening regimes (since only a
plasma medium is considered below, we set ε = 1). We
assumed the free charge to be distributed uniformly
over the macroparticle surface. Our calculations
showed that the interaction potential for a conducting
macroparticle with ε1 = ∞ is essentially identical to
that for a particle with ε1 = 81 at all interparticle dis�
tances.

It can be seen from Figs. 2 and 3 that repulsion is
changed into attraction at small distances between the
likely charged spherical macroparticle and the point
charge, with this change at large dielectric permittivi�
ties occurring at large interparticle distances. In our
calculations, we took into account the first 104 Leg�
endre polynomial expansion terms (note that such a
number of terms was required only at L = 0.1 μm, with
the first discarded term having been smaller than the
interaction potential itself by a factor of 1031. The
number of terms needed for the above accuracy to be
achieved decreases rapidly with increasing interparti�
cle distance). It was pointed out in [4] that, despite the
larger (by a factor of 10) macroparticle charge in our
calculations in a plasma with a stronger screening, the
interaction energy at maximum turns out to be lower
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Fig. 2. Potential energy of the macroparticle–point charge
interaction versus L for q1 = 103e, a1 = 10 μm, q2 = 102e,

and  = 50 μm at various values of the dielectric permit�

tivity: ε1 = 2 (1), 4 (2), and 81 (3). The solid curves and
symbols represent the calculations from (32) and (42),
respectively; 4—(29) at ε1 = 2, 5—(29) at ε1 = ∞, 6—
DLVO potential (24).
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Fig. 3. Potential energy of the macroparticle–point charge
interaction versus L for q1 = 104e, a1 = 100 μm, q2 = 102e,

and  = 50 μm at various values of the dielectric permit�
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than that in a less dense plasma. This is a consequence
of the influence of both the macroparticle size (cf.
curves 4 and 5 in Figs. 2 and 3) and the plasma screen�
ing (UDLVO |L = 0 = 4.8 eV for a stronger screening and
UDLVO |L = 0 = 12.9 eV for a weaker one).

Figures 2 and 3 also present the curves calculated
using the expression

(42)

which was derived from (23) by retaining the screening
effects only in the DLVO potential. We see that
Eq. (42) describes well the potential energy of the
interaction in a plasma at all distances.

Let us now turn to a nonuniform distribution of
free charge over the macroparticle surface, namely to
the case of an axisymmetric distribution along the
external electric field. For simplicity, consider the case
where only the monopole and dipole surface charge
expansion terms are important. In this case, it can be
seen from (31) that the component of the force along
the x axis is nonzero. This force tends to rotate the point
charge so that the direction of the straight line connect�
ing the two particles coincides with the direction of the
external electric field. At this position (θ0 = 0 or π), the

Ua R( ) UDLVO R( )
a1

R
����⎝ ⎠
⎛ ⎞

2 ε1 ε–
ε1 2ε+
��������������a1q2E0 θ0cos+=

+
a1

R
����⎝ ⎠
⎛ ⎞

n 1+ q2

n 1+( )ε nε1+
����������������������������

n 1=

∞

∑

× 4πa1σn
0 q2

2εR
�������� ε ε1–( )n+ ,

interaction potential (32) as a function of the angle θ0
has extrema: there will be a maximum at one value of
θ0 and a minimum at the other value. Precisely where
the maximum and the minimum will depend both on
the signs of q2 and σ1 and on E0, σ1, and ε1.

Figure 4 presents the dependences UE0(L) and
U

σ1(L) calculated from (25) and (33), respectively, at
various values of the macroparticle dielectric permittiv�
ity. We see that the interaction of the dipole moment of
the free charge with the point charge turns out to be
more important at small ε1, while the interaction of the
surface charge induced by a constant external electric
field with the point charge turns out to be more impor�
tant as ε1 increases. Note also that  at small ε1 is com�

parable to the interaction potential of a point charge
with a uniformly charged dielectric and, therefore,
should be taken into account when considering such
phenomena as the coagulation of dust particles in a
plasma. At the same time, UE0 becomes large at large ε1.

In the levitation region of dust particles, the flow of
positive plasma ions is directed along the external
electric field. Therefore, one might expect the side of
the macroparticle surface facing the ion flow to cap�
ture more ions than the opposite side and the flow of
electrons on the macroparticle to be less sensitive to
the external field and, in general, to be more isotropic
because of the high electron temperature in a dis�
charge. Consequently, the dipole moment of the free
charge distribution over the macroparticle surface will
be negative in the case of both negative and positive
total charges. In this case, the terms  and UE0 in

(32) will be positive and to some extent will cancel
each other out.

Figure 5 presents the dependences of the interac�
tion potential for several values of the angle θ0 calcu�
lated for a negatively charged macroparticle and a neg�
ative point charge. We see that the interaction poten�
tial for the parameters of the problem used in our
calculations turns out to be minimal at θ0 = π and
maximal at θ0 = 0 for ε1 = 2 and vice versa for ε1 = 81.

Let us now discuss the spinning of dust particles
that was observed in [14–17]. In the absence of a mag�
netic field, one might expect the surface charge distri�
bution on the dust particles, on average in time, to be
axisymmetric along the external electric field. For
such a charge distribution, it follows from Eqs. (39)–
(41) that

i.e., for an axisymmetric surface charge distribution,
the torque acting on an isolated dust particle in the
region of its levitation will be zero, in agreement with
the conclusions reached in [17] about the absence of
spinning of spherical dust particles in a discharge with�
out a magnetic field. Note that for dust particles made
of a conducting material, all torques will also become
zero (in all of the above papers [14–17], the spinning
of only dielectric dust particles was investigated).
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Fig. 4. Interaction potential of a nonuniform surface
charge with a point charge (33) (curves 1–3) and of the
surface charge induced by a constant external electric field
with a point charge (25) (curves 4–6) versus L for q1 =

⎯103e, a1 = 10 μm, q2 = 102e,  = 100 μm, E0 =

10 V cm⎯1, σ1 = σ0 = q1/4π  at various values of the

dielectric permittivity: ε1 = 2 (1, 4), 4 (2, 5), and 81 (3, 6).
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When a magnetic field is applied, the axial symme�
try of the problem will break, and a nonuniform charge

distribution such that  and, possibly, sinθ0 –

cosθ0 will become nonzero can appear in this case.
Let us show this qualitatively. Let us direct the z axis
along E0 (θ0 = 0) and the x axis along the magnetic
field. In [17], the magnetic field B did not exceed
300 G; in such fields, the electrons are magnetized,
while the ions are essentially nonmagnetized. There�
fore, the magnetic field under the conditions of the
experiments [17] had virtually no effect on the current
of ions in the layer (stratum), while in crossed electric
and magnetic fields there is a drift current of electrons
directed along the vector product [E × B], i.e., along
the y axis. Note that this current at B ≈ 300 G exceeds
appreciably the drift current of electrons along the
electric field. Consequently, we may write that the flow
of ions on the macroparticle in the dipole approxima�
tion will be described by the dependence Ji = J0i –
J1icosθ, while the flow of electrons will be described
with the same accuracy by the dependence Je = J0e +
J1esinϕ.

Next, suppose that the electron charge density on
the dust particle surface follows the angular depen�
dence of the electron flow, while the ion charge density
follows that of the ion flow. Then,

For such a surface charge distribution,

Consequently, as can be seen from (39)–(41), only the
torque Mx will be nonzero. In the regime of weak
screening, for the case under consideration we find

(43)

According to [18], the torque of the gas resistance
for a rotating spherical particle is defined by the
expression

(44)

where gas is the gas density, vth, gas is the thermal

velocity of the gas particles, and ωrot is the angular
velocity of dust particle rotation. We will take into
account the levitation condition for dust particles

where md is the dust particle mass, and g is the acceler�
ation of gravity. Let us also introduce a parameter
defining the degree of anisotropy in the electron
charge distribution over the dust particle surface:
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As a result, equating (44) and (43), for the angular
velocity of dust particle rotation we find

(45)

where d is the density of the dust particle material.

Interestingly, the angular velocity of rotation in the
approximation under consideration depends on the
discharge parameters only via the parameter ζ1e and
does not depend explicitly on the dust particle size and
charge.

Let us estimate the angular velocity of the spinning
of dust particles for the conditions of the experiments
[17], where the spinning of hollow spherical glass par�
ticles in neon at pressure p = 0.15 Torr was investi�
gated. Suppose that

We find from Eq. (45) that the angular velocity of rota�
tion around the x axis (recall that we directed it along
the magnetic field vector) is ωrot ≈ 500 rad s⎯1. Such an
angular velocity and the direction of the rotation axis
are consistent with those obtained in [17], with such a
large value being provided by only 1% electron charge
anisotropy. A more rigorous consideration of the sur�
face charge distribution in experiments is needed for a
more accurate quantitative comparison.

6. CONCLUSIONS

Our analysis of the electrostatic interaction
between a charged spherical dielectric macroparticle
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Fig. 5. Macroparticle–point charge interaction potential (32)

versus L for q1 = –103e, a1 = 10 μm, q2 = –102e, =

100 μm, E0 = 10 V cm⎯1, σ1 = σ0 = q1/4π  at various val�

ues of the dielectric permittivity: ε1 = 2 (1) and 81 (2). The
solid, dashed, and dash–dotted curves are for θ0 = π/2, 0,
and π, respectively.
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and a point charge in a plasma in the presence of an
external uniform electric field showed that the interac�
tion potential at all distances is well described by a
superposition of the “long�range” DLVO potential
and the “short�range” interaction potential of the
dipole and higher moments of the distribution of the
free and induced (by the external electric field and the
point charge) surface charge with a point charge in a
vacuum. We established that the point charge–macro�
particle interaction potential has an extremum at the
positions where the line connecting their centers is
directed along the external electric field. In this case,
the positions of the maximum and minimum depend
on the relation between the external electric field and
the dipole moment of the surface charge distribution.
Our study of the torque of the electrostatic forces act�
ing on a conducting macroparticle in a uniform exter�
nal electric field showed that it is exactly equal to zero
for a spherical particle and is nonzero for a dielectric
macroparticle. Our estimates of the angular velocity of
the spinning of dust particles caused by a nonuniform
distribution of free charge over their surface showed
that even a slight nonuniformity of the charge distribu�
tion over the surface could lead to significant angular
velocities of the spinning of dielectric macroparticles.
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